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This paper investigates the linear stability of finite-difference approximations to 
no-slip boundary conditions in fluid flow. Stability analyses are competed for one- 
dimensional problems using schemes suitable for two-dimensional problems. All condi- 
tions are shown to be stable if there is no suction and conditionally stable if there is 
suction. It is also shown that there are difficulties with choosing a suitable time integra- 
tion method if a high order no-slip approximation is used. 

1. INTRODUCTION 

1.1 In this paper we investigate the effects of no-slip boundary conditions on the 
linear stability of difference equations arising in the numerical solution of the two- 
dimensional, time-dependent, Navier-Stokes equations. The usual method of 
investigating linear stability when diffusion teams are present consists of examining 
the behaviour of amplitudes of Fourier components assuming that the equations 
are approximately linear, and that the region is infinite (or that boundaries are 
periodic). This clearly does not take into account the effect of no-slip boundary 
conditions. The method employed here is equivalent to seeking Fourier components 
satisfying the boundary conditions. We allow these components to be complex. 

The results obtained are for one-dimensional problems using finite-difference 
schemes applicable to two dimensions. Of course, in practice, more efficient 
methods could be used to solve the one-dimensional flow equations. We can expect 
that the stability properties of a two-dimensional problem will be similar to those of 
a one-dimensional problem with similar boundary conditions. Certainly, if a 
boundary condition causes instability in one dimension, it is most probable that 
there will be difficulties in a higher number of dimensions. 

We shall also consider the effect of suction at a wall, when the linear parts of non- 
linear terms are introduced. We shall not discuss the moving wall and extrapolation 
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conditions suggested by Fromm [l, 21. An investigation of their stability is given by 
Taylor [3]. 

1.2. Numerical Method 

The two-dimensional, time-dependent, Navier-Stokes equations may be written 
in terms of the stream function 4(x, y, t) and vorticity 5(x, y, t) as 

and 

where v is the viscosity, 

2 = VW + J(h 5) 

v=ljl = -5, (2) 

and 

The velocity of the fluid at any point is given by 

and 

a* 
u=av (3) 

a* 
V=-ax9 (4) 

where u and v are the velocity components in the x and y directions. 
The numerical method consists of replacing (1) and (2) by suitable finite-difference 

equations (see, e.g., [l]). Vorticity values are first advanced over a time step 
using a difference approximation to (1). The vorticity values so obtained are used 
in a difference approximation to (2) and the resulting linear equations are solved 
to find values for the stream function. Various difference schemes have been tried 
and particular attention has been directed to finding satisfactory difference analo- 
gues of the nonlinear term J($, 5>. We shall assume that the operator V2 in both 
(1) and (2) is replaced by the usual five-point difference formula so that (2) becomes 

(5) 



270 TAYLOR 

where #i,j and &, are the values of the stream function and vorticity in the differ- 
ence scheme at the point xi = X, + ih, yj = y,, + i/z. Thus the points included in 
the scheme are on a square grid of mesh size h. 

2. NO-SLIP BOUNDARY CONDITIONS 

2.1. We shall consider numerical approximations to conditions on a fixed wall 
along the line y = y0 . We write $,, and 5, (instead of h,,, and ti,J for the values 
of the stream function and vorticity at an arbitrary mesh point on this boundary, 
&, and cm1 for values one step outside the boundary, and $r and & for values one 
step inside the boundary. 

If there is no-slip at the wall, the stream function is known. Vorticity is generated 
at such a boundary and this must be incorporated in the numerical method. The 
process, proposed and used by Fromm, is to first advance vorticity values at 
interior points using a finite-difference form of (1). Values of # at interior points 
may now be found using Eq. (5), as these involve the vorticity at only interior points 
and $I is known on the boundary. Using the condition of zero velocity along the 
wall, it is possible to obtain hypothetical values for # at points just outside the 
boundary. The values of # thus found may now be inserted in Eq. (5) for boundary 
points, to obtain the vorticity at these points. In the methods to be described, the 
stream function at the wall is a linear function of x and therefore there is a suction 
velocity which is constant along the wall. 

2.2. Fromm’s Condition 

The conditions on the stream function are: 

where & is a given linear function of x. Values of Z/J at interior points are found 
using (5) with #,, = &, at the boundary. Reversing (5), we obtain for the boundary 
vorticity, 

&I = 494 - wll + ~-,W 

and thus, as #-1 = & = J,& , we obtain 

50 = 4th - l/lb)/h2. 

Fromm [l] has shown that the condition is a more accurate approximation to flow 
with a wall along y = y, - qh than with a wall along y = y,, . 
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2.3. Thorn’s condition 

Thorn [4] proposed the conditions: 

where &, is a given linear function of X. 
The method is similar to Fromm’s and the boundary vorticity is found using 

50 = --2(#1 - hJlh2. (7) 

This condition is often easier to apply than Fromm’s. 

2.4. Wood’s condition 

Woods [5] derived the conditions: 

$0 = lC’b 

and 

where &, is a given linear function of x. 
This method uses an approximation to Eq. (2) of higher degree than (5) when 

finding the boundary vorticity values. It has been employed successfully in several 
calculations of steady-state solutions, e.g., Russell [6]. 

3. NUMERICAL STABILITY 

3.1. We shall investigate the linear stability of the usual difference approximation 
to the one-space-dimensional case of Eqs. (1) and (2). For one-dimensional flow 
along a wall y = a constant, (1) becomes 

am4 0 
at=” 

a25b5 t) 
w 

_ v aixY, 0 
ay 

where -V is the suction velocity at the wall. If we replace only the space deriva- 
tives of <(y, t) by finite differences, except at the boundaries, we obtain 

- = ; (5,+1(t) - X,(t) + L--l(t)) - & G+dt) - L-lo)) &j(t) 
dt 

where cj(t) denotes the approximation to [( yj , t). All the difference approximations 
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to J(#, 0 described by Arakawa [7] and Fromm [8] reduce to the transportation 
term in (10). In any numerical method we would also have to make difference 
approximations to time derivatives. 

The system (10) may be written in the form 

& ,,=MC+b, (11) 

where < is a vector with components &t), M is a square matrix, and b is a vector 
whose elements depend on the boundary conditions. 

If A, 5 r = 1, 2,..., m, are the eigenvalues of M, we say that the system (11) is 

stable, if m?x Re(h,) < 0, 

neutrally stable, if m$x Re(h,) = 0 and every h, with Re(h,.) = 0 is a 
simple zero of the minimal polynomial of M, 

unstable, if it is neither stable nor neutrally stable. 

In general, a perturbation of the initial solution vector of (15) will produce an error 
decreasing to zero with time for the stable case, a uniformly bounded error for the 
neutrally stable case and an unbounded error for the unstable case. See, e.g., 
Bellman [9]. 

Conditions on the eigenvalues of M to ensure stability of the complete discretiza- 
tion of (11) are fairly easily devised for the usual time-integration methods. Several 
methods are considered by Varga [IO]. For all methods it is essential that (11) be 
stable or neutrally stable. 

If x is an eigenvector of M, corresponding to an eigenvalue X, , the components 
xi of x satisfy the difference equations 

(a + p) x3-1 - (201 + A,) xj + (a - p) x3+1 = 0 (12) 

where cy = V/P and p = V/(2/2). Homogeneous boundary conditions on the xj are 
derived from those applied to & . 

The general solution of (12) (for e7 f 0 or ?r) is given by 

~3 = aj (A cos jd, + B sin jd,), 
where 

(13) 

(14) 

(15) 
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and 
b = In a. (16) 

We seek values of 8,) A, and B which give nonzero eigenvectors such that the 
components (13) satisfy the boundary conditions introduced earlier. If a solution 
is given by 8, = 0 or r, the general solution (13) is no longer valid and we seek a 
solution containing terms of the form j( &u)i. The following three cases regarding 
01 and /3 will be considered and some numerical results are shown in Table I. (The 
case 01 = -j3 is ignored as for this (12) reduces to a first order equation.) 

TABLE I 

Values of my Re(Q 

Boundary 
conditions Case B C C 

Y = Yo Y = Yn-1 b +os +5.0 +15.0 

$. given 

U given 

& given 

U given 

tfQo given 

U given 

Fromm’s 

Fromm’s 

Thorn’s 

Thorn’s 

Woods’ 

Woods’ 

-0.35205 -1.16549 
-0.30628 - 1.34923 

-0.35612 -0.95308 
-0.30726 - 1.20822 

-0.35777 -0.39633 
-0.30810 -0.75668 

-0.36270 -0.02129 
-0.30926 -0.51676 

-0.36021 +5.62269 
-0.30881 +5.89842 

-0.36530 +6.50898 
-0.30997 +6.51089 

+1.22316 
+0.66670 

+2.41150 
+1.62210 

+4.09456 
+2.97769 

+6.04077 
+4.45470 

+26.6770 
+27.5973 

+29.6448 
$29.6495 

B In all cases a = 1 and for each set of boundary conditions and values of j the two entries 
are for n = 10 and 15 respectively. 

Case A (Y. > 0, p = 0. This corresponds to V = 0. We obtain from (15) and 
(16) CI = 1 and b = 0. 

Case B cy > p > 0. This corresponds to 0 < V < 2v/h. Both a and b are real 
and a > 1. We have 

Re(&.) = 201 ( Re(?lie” - 1). 
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Case C /3 > 01 > 0. This corresponds to V > 2v/h. We let a = -ik where k > 1, 
when ch b = --i sh c, where c = In k > 0. From (14) we find 

and 

Re(A,) = -201 ( I”‘,“,“: ‘r) + 1). 

4. STABILITY OF FROMM'S CONDITION 

4.1. Channel of Finite Width 

We consider first the stability of Fromm’s condition when used as both walls of 
a channel in which the flow is one-dimensional with no suction at the walls. The 
boundary conditions, which are of the form (6), involve stream function values and 
these must be related to the vorticity if we are to obtain equations of the form (11). 
For the one-dimensional case, the difference approximation to (2) may be written as 

H+ = -h2< = c, (20) 

where the components of + and c are the values of the stream function and vor- 
ticity respectively at interior grid points, H is the n x n tridiagonal matrix 

H= 

1 
-2 

1 -2 
1 

0' 

1 
-2. 

and c = 

A and #n+1 are the specified boundary values of the stream function. y = y,, and 
y = yn+l are the walls of the channel. Now H-l is symmetric and has i, jth element 

-(n+l--j)i 
n+l 

for j > i, 

and therefore, 

(21) 
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The boundary condition given by Eq. (6) becomes, for the lower boundary, 

The corresponding condition on the eigenvectors of M is, therefore, 

xo=-~(“If;,‘)xj 
j=l 

i.e., 

(23) 

Similarly at the upper boundary, we obtain 

(24) 

AS there is no suction at the walls, V = 0 and we are interested in Case A when 
u = 1. On substituting the general solution (13) in (23) and (24) we obtain 

and 

A i (n i- 1 - j) cos j& + B i (n + 1 - j) sin j8, = 0 (25) 
3=0 j-0 

n+1 n+1 

A c j cm j8,. + B C j sinjfl, = 0. 

These are two linear equations in the constants A and B. They yield a nonzero 
solution if the determinant of the coefficients of A and B is zero. After some con- 
siderable manipulation using identities for sums of finite trigonometric series (see, 
e.g., Taylor [3]) we can show that this occurs when the 8,. are roots of 

where 

f(e)/(l - cos 92 = 0, 

f(e) = sin e[i - COS(I~ + 2) e] - (n + 2)[1 - cos e] sin (n + 2) 8. 

Now 

f(-+$-) = sin (*) f [l - (-l)‘] forr = 1,2 ,..., n + 1, 

= 0 for even r, 
>o for odd r, 
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and 
f(0) = f(7r) = 0. 

Also we have 

f’ (5) < 0 for even r, 

and 

f’(d < 0 for even n. 

We conclude that there are n real roots 8, and the corresponding eigenvalues are 
given by (14) with ch b = 1. Each h, is real and negative and, therefore, (11) is 
stable. 

4.2. Semi-Infinite Region with Specljied Stream Function at Infinity 

We consider now one-dimensional flow in the region y, < y < yn+l , along a 
wall y = yn+l ,I with uniform flow assumed on a line, y = y0 , some distance from 
the wall. Along y = y. , the vorticity satisfies 5, = 0 and the stream function & 
is specified. This is the simplest type of approximation which may be made to flow 
at “infinity.” It also applies along a line about which the flow is symmetric. 

If #0 is constant along y = y0 , the boundary is a streamline. If & is a linear 
function of x, there is a steady flow across the boundary. 

The stream function values are again given by (20). (Note that the difference 
#nt1 - #,, determines the mass flow across any line joining the two boundaries.) 
The condition 

io = 0 

gives the condition 
xg = 0 

for the eigenvector components, and thus from (13), A = 0. At the upper bound- 
ary the xj satisfy (24). We again sum the finite trigonometric series involved and 
deduce that we require the 8, to be roots of 

{a(1 - az) sin 0 - (n + 2) an+* sin ne + [2(n + 2) + (n + 1) a”] an+3 sin(n + 1) 8 

- [2(n + 1) a2 + (n + 2)] an+2 sin(n + 2) e 

+ (n + 1) an+3 sin@ + 3) ey(i + a2 - 2a cos ey = 0 (27) 

1 We take the wall as y = yn+* as this simplifies the algebra needed in this section. 
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if B is to be nonzero. The roots of this equation are not real unless Q = 1 and 
therefore full analysis has only been found possible for Case A. However it has 
been possible to complete a partial analysis for other cases and obtain conditions 
under which the method is unstable. We shall complete this in detail for this set of 
boundary conditions so as to illustrate the method. 

Case A. a = 1 and by considering the behavior of the numerator in (27) at 
points rr/(n + #) we can show that there are n real roots 0, . 

Case B. The eigenvalues are complex and analysis has not been possible. In all 
of several particular examples investigated by direct calculation of eigenvalues, the 
case has been found stable. Table I gives some results. 

Case C. This case corresponds to flow towards the wall y = yn+l at which 
there is suction. If n is odd, there must be a real eigenvalue of M as complex eigen- 
values occur in conjugate pairs. We shall examine the sign of this real eigenvalue 
and show that, if /3/a is sufficiently large, the method is unstable. This restriction 
to odd values of n is justified, in that we are concerned with seeking indications of 
the stability of the method in two dimensions. 

If X, is real, we deduce from (18) that cos 0, is purely imaginary and we therefore 
let 

when (18) becomes 

Or = $- t iqb , 

A, = 2ol(sh &/sh c - 1). 

We have Re(h,.) > 0 if & is real and $7 > c > 0. Putting 8 = +7r + i$ in (27) we 
deduce (remembering n is odd) that 4,. are the roots of 

F($)/(sh c - sh 4)” = 0 (28) 

where 

~(4) = k( 1 + k2) ch 4 - (n + 2) kn+4 ch n$ 

+ [2(n + 2) - (n + 1) k21 knf3 sh(n + 1) d 

+ [2(n + 1) k2 - (n + 2)] k”+’ ch(n + 2) # - (n + 1) kn+3 sh(n + 3) 4, 

a = -ik and c = In k. 

Notice first that F(c) = F’(c) = 0, but this does not give a root 4 = c of (28), as 
the denominator also has a double zero at this point. 
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If P”(c) is positive, F(4) has a minimum at C$ = c and since 

(n+ 1) F(4) - - ___ 2 
kn+Q(n+3)d as+--+co, 

< 0, 

there will be a real root & with 4,. > c. Now, F”(c) > 0, if k < k, , where k, is the 
only root of 

4(n + l)(n + 2) + k2(n2 + 3n + 3) 

+ ak4(n + l)(n + 2) - (n + 2) k2n+4 - (n + 1) k2*+“ = 0 (29) 

with k, > 1. 
Thus if n is odd and k < k, , the method is unstable. 

Since 

the condition k < k, is equivalent to 

I% B (kc2 + 1) j3- -=---> 
2v a (kc2 - 1) = cy c ( 1 (say). (30) 

A graph of (fl/& against n, for odd n, is shown in Fig. 1. By computing the 
eigenvalues of M it has been found, in all of several numerical cases with n odd, 
that the real eigenvalue derived from (28) is the eigenvalue with largest real part 
(e.g., Table II gives eigenvalues of M for n = 15, 01 = 1, b = 11). Thus, for odd 
n, (11) has been proved unstable for (b/a) > (/3/o& and on the basis of numerical 

TABLE II 

Eigenvalues of M for LX = 1, fi = 11, n = 15, &, and to 
Specified and Fromm’s Condition for y = y,,, 

-0.15780 
-0.49459 f 4.402931’ 
-1.17858 i 8.164121’ 
- 1.42657 i 11.45621’ 
-1.65094 i 14.36322’ 
-1.79940 i 16.71401’ 
-1.91326 h 18.46511 
-1.97781 f 19.5373i 
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Boundclry Conditions 

FIG. 1. Critical values of @/a). For odd n the values were obtained analytically, e.g., from 
Eq. (33). For n = 16,30 the values were obtained by direct calculation of eigenvalues. 

results it is probably stable for (~/CL) < (p/a)c . If n is even, direct calculation of the 
eigenvalues of M suggests that (11) becomes unstable, as (/3/a) is increased, at 
points just above a smooth curve (Fig. 1) joining the critical values (ts/~)~ for odd 
n. Critical values of @/ LY are shown in Fig. 1 for n = 16,30. Approximately, ) 
therefore, the region above the curve represents unstable ratios /3/a and the region 
below the curve, stable ratios. 

4.3. Semi-In$nite Region with Specljied VeIocity at Injinity 

In the last section we assumed that the stream function was specified at both 
boundaries, which would imply a hxed mass flow across any line joining the two 
boundaries. In a two-dimensional flow, it would probably be more appropriate to 
specify only the velocity along the boundary at infinity, so that stream function 
values may be adjusted according to other factors influencing the flow. 

We shall consider the one-dimensional stability of flow in the region 
y. < Y < Y~+~ along a wall Y = Y~+~ , with y = y. assumed to be a boundary at 
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“infinity.” Along y = y,, , we take 5, = 0 and &, - $-1 = Uh. The latter is a 
finite-difference approximation to 

a* u -= 
aY ’ 

where U is the specified velocity along y = y,, . 
The stream function will be related to the vorticity by 

L+ = -h2< + d, 

where the components of 9 and < are the stream function and vorticity at interior 
grid points, L is the IZ x n tridiagonal matrix, 

and d = 

where #la+l is the specified stream function at the wall. The last row of L-l has - 1 
for each element and thus 

(31) 

and, on using Eq. (6) modified for an upper boundary, we obtain 

The boundary conditions on the eigenvalues of M are thus x0 = 0 and 

Of1 
; xj = 0. 

The first condition implies A = 0 and from the second we deduce that the 8, must 
be roots of 

[sin e + an+2 sin(n + 1) e - a n+l sin@ + 2) 8]/(ch b - cos 0) = 0. (33) 

Cases A and B. By considering the numerator in (33) for points m/(n + #), it 
is easy to show there are II real roots and thus (11) is stable. 
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Case C. Analysis similar to that of the Section 4.2 may be made for odd n. 
Figure 1 shows critical values of /3/a and some numerical results are shown in 
Table I. 

5. STABILITY OF THOM'S CONDITION 

5.1. The treatment and results for Thorn’s condition are similar to those of 
Fromm’s. If & and $n+l are specified the vorticity is given by 

at the upper boundary. If only the velocity is specified at the lower boundary we 
obtain 

For one-dimensional flow in a channel of finite width the condition gives a stable 
system of ordinary differential equations. For a semi-infinite region, critical values 
of /3/a are shown in Fig. 1. 

6. STABILITY OF WOODS' CONDITION 

6.1. Semi-InJinite Region with Specified Stream Function at Infinity 

If Woods’ condition is used along y = Y,+~ and the conditions 5, = 0 and 
specified &, are used along y = y,, , the stream function #,, , one grid point from 
the wall, is given by (22). On using (8) at an upper boundary, we obtain as con- 
ditions on the components of eigenvectors of M, 

x, = 0 

x n+l = n + 1 ?=I --3 i jxj - i x, . 

Case A. a = 1 and the e7 are roots of 

f W(l - cos e) = 0 
where 

f(6) = (n + 1) sin@ - 1) 6’ - 6(n + 1) sin n0 + 3(n - 1) sin(n + 1) 0 

+ 2(n + 1) sin(n + 2) 8. 
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By consideringf(0) at points rr/(n + 4) we deduce that there are at least (n - 1) 
real roots in (0, r). The remaining root is of the form 8, = 7~ + iz, as may be seen 
by considering 

F(z) = (-1)” $(7r + iz). 

F(z) has two zeros apart from z = 0, as F(co) < 0 and F’(0) > 0. If one zero is at 
z, the other is at -z, as F(z) is an odd function. From (14) with b = 0 we deduce 
that the corresponding eigenvalue is 

A, = -2ol(chz, + 1). (34) 

This eigenvalue is negative and therefore (11) is stable. An eigenvalue of the form 
(34) does however give some difficulties when performing the time integration as 
will be shown in Section 6.3. 

Case B. Numerical evidence suggests this case is stable. 

Case C. Assuming n is odd analysis similar to that of Section 4.2 may be made 
and critical values of /?/a are shown in Fig. 1. 

6.2. Semi-Injinire Region with Specified Velocity at Injinity 

We obtain similar results to those of the last section. In Case A there is again an 
eigenvalue of the form (34) and, for Case C, (fi/& - 2.186 for large n. 

6.3. Explicit Time Integration Methods with Woods’ Condition 

For Woods’ condition with either type of condition at infinity, there will be 
difficulties in choosing a suitable stable method of replacing time derivatives in (11) 
even for the diffusion Case A. In the simple explicit method, an eigenvalue of the 
form (34) will give a restriction on the magnitude of the time step 22 which is more 
severe than is usual. We require [lo] 

tit < min 
I 
-2 Rl (&) 1 

l<r<n I AT I2 = ol(chz + 1) 

whereas the usual restriction is 

which applies if all ~9, are real. For example, if the stream function is specified at 
infinity, n = 15 and V = 0, there is an eigenvalue -4.951~ when we require 
6t < 0.404a! instead of the usual restriction 6t < 0.501. 

The DuFort-Frankel [l 11 method is always unstable when an eigenvalue of the 
form of (34) occurs. For (11) the method is 

r e+l - ys--l = 6t[(M + 2olI) c” - olcs+l - ,yB-l + b”], 
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where <” is the vorticity vector after s time steps and b” is determined by the 
boundary conditions. We can write the method in the two stage form 

[y] = c [$I + [ “,“I, 
where C is the 2n x 2n matrix 

This recurrence relation is unstable if any eigenvalue of C has absolute value 
greater than unity. The eigenvalues of C are 

@, + 201) 6t zt l/CA, + 2@ * w + 4(1 + 01 . Wl - 01 * at> 
2(1 + a * 8t) 

for r = 1 
, 
2 
,*‘a, 

n. 

One of these, when A, is given by (34), is 

4% - a . ch z, - 1/l + a2 . 8ta sh2 z, 
1+ 01. at 

which is less than -1. This difficulty also occurs for the diffusion equation with 
derivative boundary conditions and is described in [ 121. 

The effect of this instability is illustrated in an example in Section 7. No com- 
parable difficulty arises with either Fromm’s or Thorn’s condition. For the latter 
methods, we have shown that all eigenvalues are of the form (14) with 8, real if 
there is no suction. 

7. NUMERICAL EXAMPLES 

We consider, as a numerical example, flow along a wall y = 0 which has been 
brought impulsively to rest at time t = 0. We seek a solution u( y, t) of the velocity 
equation, 

au a34 -pe 
Z="ay2 ay' 

where the flow is in the region y > 0 and --V is the suction velocity at the wall. 
The boundary conditions are 

MY, 0) = u, for y 2 0, 

u(0, t) = 0, u( co, t) = u, for t > 0. 
(36) 

U is the initial velocity of the fluid and the free stream velocity in the x-direction. 
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The solution may be found by integral transformation and on substituting it in 

we obtain 

where erfc(x) is the complimentary error function defined by 

In Figure 2 we show results obtained using the DuFort-Frankel method for all 

A 
‘) 

1 - I 

\ Y 
.15 .25 .35 

\ 
\ 

-5 - \ I’ 
I I 
I 
\ FROMM’S CONDITION x 
I 

-6 - I 
I THOM’S CONDITION 0 

WOOD’S CONDITION cl 
I 

-7 - I 
I I 

EXACT SOLUTION - 

\ 
\ : 

-* - \ I 

(37) 

FIG. 2. V = 0 case showing instability for Wood’s condition. 
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FROMM’S CONDITION x + 0 

\ THOM’S CONDITION 0 0 A 

\ 
R- 

\ 
EXACT SOLUTION - - --- 

FIG. 3. Numerical examples of Thorn’s and Fromm’s conditions. 

three no-slip conditions with V = 0, when there is no suction. h = 0.1, n = 15, 
v = 0.15, 6t = 0.001 and the results are for t = 0.2. In all cases the boundary 
“at infinity” is a line along which the velocity U is specified by U = 1. The results 
for Fromm’s condition are displaced by a half mesh length as the wall is effectively 
along y = -$h. Instability can clearly be seen for the Woods’ condition. 

The results shown in Fig. 3 were obtained for Fromm’s and Thorn’s conditions 
and the DuFort-Frankel method with h = 0.1, IZ = 15, St = 0.01, U = 1, 
v = 0.15, and V = -0.75 and -1.5. (Thus 01 = 15 and p = -3.75 and -7.5.) 
Fromm’s condition gives more accurate results than Thorn’s, particularly for small 
values of t. 



286 TAYLOR 

8. RESTRICTION OF MESH LENGTH 

We have already seen that the ratio ~/CX = Vh/2v must be restricted if the numeri- 
cal method is to be stable. This requirement is equivalent to a limitation on the 
size of h. As t -+ cc, the solution (37) tends to a steady-state solution whose form 
also indicates that h must be restricted. The steady-state solution is 

If h is too large, the vorticity will be concentrated into the region between the 
boundary and the first interior grid point and the finite-difference approximation 
will be completely inaccurate. The difference approximation 

5(h, a~> - 5(0, ~0) UV evhlv - 1 ZZ- 
h V ( h ) 

to the derivative 

abih, co) - “’ . eVh/2v 

aY V2 

will have relative error E, where 

5@, a~> - 5(Q ‘50) 
E=l(l-( h 

= / 1 - &. (eVhP - e-VhP)l 

= 1 1 - ; sh (;)I, 

where /?/cz = - Vh/2v. (The change of sign is made because the wall is a lower and 
not an upper boundary.) For example, if p/a = 1, E N 0.18 which represents 
quite a large error whereas for the second numerical example of Section 7, 
/~/LX = 0.25 and 0.5 when E N 0.010 and 0.042. It is hence necessary for the ratio 
/3/a to be restricted and most problems would probably at least require P/LX < 1. 
This limitation on B/a! will also apply to two-dimensional flows. The instabilities 
found in Sections 4-6 are not as likely to restrict the magnitude of /3/a as the ac- 
curacy considerations presented here. 

9. CONCLUSIONS 

The main result obtained is that the no-slip conditions are stable if there is no 
suction at the wall. If there is a suction velocity V, the mesh size h must be chosen 
so that the ratio Vh/v (where v is the viscosity) is restricted in magnitude. As 
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Vh/v is increased the finite-difference approximation becomes firstly inaccurate and 
secondly unstable. There is very little difference between the stability properties of 
Fromm’s [l] and Thorn’s [4] conditions. The higher order Woods’ [5] condition 
however does give difficulties when used with explicit time-integration methods. 
The type of analysis used can often be applied to other boundary conditions, 
however, it does not seem possible that it can be extended to deal directly with 
two-dimensional problems, because the coefficients of the differential equation will 
not be constant over the domain. Some two-dimensional problems (with constant 
coefficients) could be investigated by using the properties of direct products of 
matrices. The main value of the analysis as applied here is that it does make it 
possible to identify possible causes of instability. 
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